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Abstract

The limits of applicability of continuum flow models in the problem of the hypersonic rarefied gas flow over blunt bodies are
determined by an asymptotic analysis of the Navier–Stokes equations, the numerical solution of the viscous shock layer equations
and the numerical and asymptotic solution of the thin viscous shock layer equations for low Reynolds numbers. It is shown that the
thin viscous shock layer model gives correct values of the skin friction coefficient and the heat transfer coefficient in the transitional to
free-molecule flow regime. The asymptotic solutions, the numerical solutions obtained within the framework of different continuum
models, and the results of a calculation by Direct Simulation Monte Carlo method are compared.
© 2007 Elsevier Ltd. All rights reserved.

The motion of spacecraft, probes and meteoroids through the atmosphere of the Earth and planets is accompanied
by successive passage through all regimes of supersonic flow, beginning from free-molecule flow, then transitional
(Boltzmann) flow and further, in the lower layers of the atmosphere, continuum (hydrodynamic) flow. These flow modes,
on a scale of Knudsen numbers Kn = l/L, where l is the mean free path of the molecules and L is the macroscopic length
of the body in the flow, are characterised by large (Kn � 1), medium (Kn = O(1)) and small (Kn � 1) Knudsen numbers
respectively. In each of these the gas flow is traditionally described by a mathematical model that is adequate for the
particular flow, despite the fact that all these types of flow can, in principle, be strictly described within the framework
of a single model, based on the solution of the Boltzmann kinetic equation for a single-particle distribution function.
This non-linear integro-differential equation, in general, contains seven independent variables: phase-space variables
(three coordinates and three components of the particle velocity) and time, and includes a fivefold non-linear collision
integral (for a monatomic and multiatomic gas, ignoring the excitation of internal degrees of freedom. The multiplicity
of the collision integral is increased if the excitation of internal degrees of freedom is taken into account. Due to the
high dimensions of the phase space of the independent variables of Boltzmann equation, the solution of any interesting
problems of hypersonic aerodynamics and heat transfer is still a complex computational problem.1–3

An important practical route is to construct simpler model kinetic equations. The first of these was Krook’s model4

for the Boltzmann equation with an extremely simple relaxation term, approximately replacing the Boltzmann collision
integral, and hence the Krook equation preserves all the features of the Boltzmann equation related to the free motion
of the particles and, approximately, describes their collisions mean-statistically. Quantitative results obtained using the
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solution of the Krook equation, apart from extremely rare cases, differ from the corresponding results obtained using
the solution of the Boltzmann equation. In particular, on changing to a continuum medium, the Krook equation gives
a Prandtl number equal to unity, whereas its accurate value for a monatomic gas is 2/3 (Ref. 5).

Since the Sixties of the last century the construction of more interesting model Boltzmann equations has been
developed. At the present time, a model equation of the incomplete third approximation (the S-model) has become
widely used.6–8 Despite the fact that this model kinetic equation is much simpler than the accurate Boltzmann equation,
it is also a complex integro-differential equation of high dimension. A typical difficulty in the numerical solution of both
the model and the exact Boltzmann kinetic equation for large Kn numbers is the need to take into account discontinuities
of the distribution function in the flow, which considerably complicates the numerical algorithm and its programming.
On the other hand, a numerical solution of the kinetic equations for small Kn numbers (an approximation to the
continuum flow regime) requires the construction of completely conservative methods of high order of approximation
(no less than the second).

Different approximate Direct Simulation Monte Carlo (DSMC) methods are an alternative to the kinetic
equations.9–12 At the present time, this is the main mathematical instrument for investigating complex two-dimensional
and three-dimensional hypersonic flows for the following basic reasons: the comparative simplicity of the transition
from one-dimensional to two-dimensional and three-dimensional problems, the possibility of using different models
of the interaction of the particles with the excitation of the internal degrees of freedom, and also the possibility of
taking chemical reactions into account without appreciable complication of the computational algorithm and, fmally,
the possibility of effectively using the method on modern computers with parallel and vector architecture.

Despite the wide use of the DSMC methods, they have a number of drawbacks. When modelling near-continuum
flows, additional calculations using a finer grid and with a large number of modelling particles become extremely time
consuming, and in this case the problem arises of the accuracy of the results, which are far from being found from
the solution of the Boltzmann equation. An analysis of the accuracy of the solution is difficult due to the presence
of statistical errors related to the space and time discretisation, and the errors related to the limited possibilities of
specifying a sufficiently large number of modeling particles. Right up to the end the relation between the DSMC
method and the solution of the Boltzmann equation is not clear.

The presence of the Kn number in front of the convective term, (in front of the total derivative of the distribution
function in phase space of the coordinates and velocities) in the dimensionless Boltzmann equation enables us to
construct asymptotic approximations of this equation, which are effective for solving problems of hypersonic aero-
dynamics and heat transfer for fairly large and fairly small Kn numbers. Under free-molecule flow conditions the
Boltzmann equation allows of an accurate solution in the form of a velocity-stable Maxwell distribution function,
and the difficulty of solving boundary-value problems of aerodynamics and heat transfer is transferred to a correct
consideration of the boundary conditions for the distribution function.13–16 Obtaining these conditions reduces to the
quantum-mechanical problem of calculating the collective interaction of particles incident on the surface over which
the flow is occurring, with the specified crystal lattice of the body. Its solution finally leads, on the distribution function
level, to the determination of the boundary transformant – the probability density of particles reflected from the surface,
in terms of which the velocity distribution of these particles is found, and thereby one can determine the momentum
and energy transferred by them to the body. This problem is rather quantum-mechanical and can be solved for simple
models of the crystal lattice of the surface over which the flow is occurring, in connection with which, in aerodynamic
calculations, as a rule, a phenomenological mirror-diffusion reflection scheme is used, when the boundary transformant
is expressed in terms of two macroquantities in all: the diffusion coefficient (separately for the tangential and normal
momentum of the incident particles) and the energy accommodation coefficient, which, as a rule, are taken from
experiment.

It is important to note that, in problems of aerodynamics and heat transfer, the effect of laws of the interaction of
the particles (molecules, atoms, ions and electrons) with the surfaces over which the flow occurs manifests itself more
strongly the more rarefied the gas. These problems do not arise in the case of the continuum flow regime in a fairly
dense gas, since each molecule near the surface collides with it many times, completely loses its tangential momentum
(the no-slip condition is satisfied) and transfers all its energy (the energy accommodation coefficient is equal to unity).
After determining the distribution function with specified boundary conditions, the determination of the aerodynamic
forces and heat fluxes on the wall is reduced, in rarefied gas aerodynamics, to quadratures, which for the simplest form
of bodies in the flow (a plate, cylinder, sphere, wedge, cone, etc.) are calculated explicitly, while for complex surfaces
they are calculated numerically.
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The free-molecule flow regime is one of the few examples of gas mechanics when the drag and heat transfer
coefficients can be obtained from an exact solution for the distribution function by means of quadratures. Final
results are obtained, apart from the accommodation coefficients of the normal and tangential momenta and the energy
accommodation coefficient. Available experimental and theoretical data indicate the limit of the approach of free-
molecule flow as being approximately Kn∞ = l∞/L ≥ 10, where the subscript ∞ relates to the free stream conditions.

In another limiting case – the continuum flow regime; when the Kn number is fairly small, expansion of the
distribution function in the neighbourhood of a local thermodynamic equilibrium (in the neighbourhood of the velocity
equilibrium Maxwell function) in integer powers of Kn number (the Enskog method) in the zeroth approximation
leads to the Euler equations, while in the first approximation it leads to the Navier–Stokes equations with a loss in
the possibility of describing the processes occurring in the time between particle collisions (∼10−9 sec under normal
conditions) and in regions of the order of the mean free path, for example, in Knudsen layers and in the shock wave
structure. The initial Boltzmann equation, unlike equations of hydrodynamics, describes processes occurring in time
and space scales of the Knudsen layer, but, in turn, does not describe in time and space the particle collision processes
– a collision occurs instantaneously and at a point. When comparing the Boltzmann equation with the Euler and
Navien–Stokes equations one must also take into account that the latter, in a number of cases, also allow of analytical
solutions of quite interesting boundary-value problems, whereas the solution of the boundary-value problems within the
framework of Boltzmann equation requires, from the very beginning, the use of extremely time-consuming numerical
methods.

In the second approximation of Enskog method, we arrive at the Burnett equations and then super-Burnett equations.
In recent years there has been increasing interest in taking into account higher approximations of Enskog method, in
particular, the Burnett equations, in the hope of extending the range of applicability of continuum models in hypersonic
flow problems towards higher Kn numbers (or lower Reynolds numbers Re). This is due, firstly, to success in using
these equations in the ultrasound problem and in the problem of the shock wave structure7 (the Navier–Stokes structure
of a shock wave for large Mach numbers gives its thickness a much smaller value compared with experiment).

However, fundamental complications arise when using the Burnett equations. This manifests itself first of all in
the stress tensor in the second derivatives of the temperature, while in the heat flux it manifests itself in the second
derivatives of the components of the velocity vector, which finally leads to third derivatives, namely, of the pressure
and temperature in the momentum equation and of the velocity in the energy equation, as a result of which the problem
arises of formulating additional boundary conditions, that do not arise from the mechanical formulation of the problem.
Moreover, the occurrence of short-wave instability in the Burnett equations18 gives rise to the fact that for the solution
obtained for a finer step of the numerical grid it is necessary to take additional measures to stabilize the solution.19 Thus,
to suppress instability when solving steady-state flow problems by the establishment method, “extended” (“adjusted”)
equations are used, including some specially chosen out-of-order terms.20 In addition, further investigations of the
differential approximations of Burnett equations under flow conditions with slip showed that these approximations
may violate the second law of thermodynamics.21

Moreover, according to the numerical solution of the problem of the flow as round a flat plate with a sharp leading
edge,22 the Burnett equations give a less accurate description of the flow field than the Navier–Stokes equations. It has
been shown,23,24 that the inclusion of Burnett terms worsens the agreement between the theoretical and experimental
results for Kn numbers which are close to the limit of applicability of the Navier–Stokes equations. This limit, in
hypersonic flow problems, depends on the governing parameters and on the method of solution, and, as numerical
calculations have revealed, corresponds to Kn numbers in the range from 0.1 to 0.8. The Burnett equations may improve
the results of the solution of flow problems only in those cases when the Navier–Stokes equations have acceptable
accuracy, i.e. when the Kn number is fairly small; however, wherever the Navier–Stokes equations are unsuitable,
the Burnett equations are also unsuitable.24 Hence, hopes of improving the results of the solution of supersonic and
hypersonic flow problems; for low Re numbers using the Burnett equations, compared with the results obtained using
the Navier–Stokes equations, have turned out to be unwarranted. This also applies to the super-Burnett equations. The
present status of Burnett equations has been discussed in detail in the review paper Ref. 17.

With the development of a program for investigating problems of external high-velocity flows of low-density gases
over bodies,25 a study of free-molecule hypersonic types of flow began. Later investigations were undertaken to
determine the possibility of extending the continuum approach to solve hypersonic flow problems for medium and
low Re numbers.26–28 The subsequent numerical solutions of these problems have shown,29 that when Re → 0 the
Navier–Stokes equations and their asymptotically simplified versions – the parabolized Navier–Stokes equations, the
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viscous shock layer equations and the boundary-layer equations (see the discussion of these models in Refs 30,31) –
give increasing values for the heat transfer and skin friction coefficients, i.e. they lead to physically incorrect results,
beginning with certain fairly low Re numbers. When the slip velocity and the temperature jump on the surface of
the body over which the flow is taking place (when the kinetic regime of the flow in the Knudsen layer is taken into
account) and also on the shock wave (the generalized Rankine–Hugoniot conditions32), are taken into account these
coefficients are somewhat reduced, and hence the range of applicability of these continuum models is extended to
lower Re numbers, but this does not eliminate the tendency for an unlimited increase in these coefficients when the Re
number is decreased further. A limitation of the range of applicability of the continuum models when the Re number is
decreased (when the Kn number is increased) is also found to agree with the asymptotic derivation of the Navier–Stokes
equations from the Boltzmann equation for small Kn numbers, taking into account terms of the order of unity and of
the order of Kn in the Enskog method. Moreover, the viscous shock layer equations, the parabolized Navier–Stokes
equations and the boundary-layer equations were derived asymptotically from the complete Navier–Stokes equations
for Re � 1, and, naturally, it cannot be expected that these simplified continuum models can give satisfactory and
physically correct results for Re = O(1) and Re � 1.

On the basis of the above and general physical considerations, there is a firm opinion that the continuum approach
is not justified when solving problems of hypersonic aerodynamics and heat transfer in rarefied gas flows at fairly low
Re numbers, and hence in the transitional flow regime to solve such problems either the Boltzmann equation, its model
equations or the Direct Simulation Monte Carlo methods are used. However, the limitation in the general case of the
applicability of continuum models at low Re numbers for solving flow problems at high supersonic velocities does not
exclude the use of some of them for calculating the flow in a high density shock layer.

Thus, it was shown in Refs 33 and 34 that the solution of the thin (hypersonic) viscous shock layer equations, which
were derived there from the Navier–Stokes equations for (� − 1)M2∞ � 1, � = (� − 1)/(2�) � 1, Re � 1, �Re =
O(1) (� is the hypersonic parameter,35 and � is the specific ratio heat), in the case of a strongly cooled surface with
a linear dependence of the coefficient of viscosity on the temperature in the neighbourhood of the stagnation point of
an axisymmetric body, gives the free-molecule limit for the skin friction and heat transfer coefficients. The same was
shown in Ref. 36 for flow in the neighbourhood of the stagnation point of double curvature of the body surface and
an arbitrary power dependence of the coefficient of viscosity on the temperature by the asymptotic solution of the thin
viscous shock layer equations the heat transfer coefficient and skin friction coefficients given by the solution of these
equations in the case of a strongly cooled surface as Re → 0 approach their values in free-molecule flow.

We are presented with a paradox. On the one hand, the thin viscous shock layer equations are derived on the
assumption that Re � 1, while on the other they give the physically correct behaviour of the heat transfer coefficient,
arriving at the free-molecule limit as Re → 0.

In order to resolve this paradox, we present below an asymptotic analysis of the problem of hypersonic viscous
rarefied gas flow over blunt bodies within the framework of the Navier–Stokes equations and the thin viscous shock
layer equations, the first preliminary results of which were presented earlier in Refs 30,31 and 36. This analysis, first of

all, enabled us to detect the presence of two important parameters of the problem. One of them is � = (��−1Re−1)
1/2

,
where Re = �∞V∞R0/�(T0), �∞ and V∞ are the free stream density and velocity, �(T0) is the coefficient of viscosity,
� is the density, T0 is the free stream stagnation temperature and R0 is the radius of curvature of the body surface

at the stagnation point; the shock layer thickness is of the order of �. The second parameter is � = (Re�−1�−1)
1/2

,
and the dimensionless tangential velocity and the dimensionless enthalpy have the order of �. Second, it follows from
an asymptotic analysis of the Navier–Stokes equations that the asymptotically simplified for Re � 1 models of the
Navier–Stokes equations mentioned above – the thin viscous shock layer and viscous shock layer equations34,37 turn
out to be justified not only for high but also for low Re numbers (the small parameter �), on the assumption that
� � 1. The viscous shock layer equations are derived from the Navier–Stokes equations by neglecting terms O(�2) and
taking terms O(�) into account. The thin viscous shock layer equations are derived from the Navien-Stokes equations
neglecting terms O(�2) and O(�), with the exception of the term with a tangential pressure gradient, which is of the
order of �, i.e. it is out-of-order term and remains in the thin viscous shock layer equations, since it plays an important
role at high Re numbers.

If we consider the limiting case of the Navier–Stokes equations, i.e. we neglect terms O(�2), O(�) and O(�) taking
only terms O(1) into account, the Navier–Stokes equations reduce to “local” Stokes equations (quasi-two-dimensional,
when there are no derivatives of the longitudinal coordinates) for Reynolds’ problem38 with vanishing inertia and
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pressure forces, which are called the vanishing viscous shock layer equations.30,31 The solution of these equations is
obtained in analytical form for an arbitrary power dependence of the coefficient of viscosity on the temperature; the
velocity and temperature profiles in the shock layer around the windward surface of the body, the stream function and
the external boundary of the shock layer are obtained. This solution gives values of the drag coefficient and the heat
transfer coefficient that are identical with their free-molecule limits with an energy accommodation coefficient of unity.

The asymptotic solution of the thin viscous shock layer equations is obtained for low Re numbers in the neigh-
bourhood of the stagnation point of double curvature for different relations between the governing parameters of the
problem. It is shown that when the Re number is decreased the heat transfer coefficient approaches its free-molecule
limit with an accommodation coefficient of unity, irrespective of the value of the parameter �, whereas the skin friction
coefficient approaches its free-molecule limit only if the parameter � is small or when there are no out-of-order terms
with a tangential pressure gradient in the thin viscous shock layer equations.

Numerical calculations of the thin viscous shock layer and viscous shock layer equations were obtained by an
effective iterational-marching method.39,40 The asymptotic solutions are compared with the numerical ones and the
limits of their applicability are established. The asymptotic and numerical solutions are also compared with the results
of other papers – the solutions of the Navier–Stokes equations and the solutions obtained by the Direct Simulation
Monte Carlo method.

1. The Navier–Stokes equations in a natural system of coordinates, attached to the surface of the body in
the flow, in Dorodnitsyn–Lees variables

We will consider the two-dimensional problem of steady supersonic laminar flow a uniform viscous heat-conducting
perfect gas over a blunt body. The flow over an axisymmetric or plane body, whose contour is assumed to be fairly
smooth (with a possible discontinuity of the curvature), by a gas flow with velocity V∞, directed along the axis of
symmetry of the body OZ will be considered in an orthogonal system of coordinates attached to its surface (Fig. 1). In
this system of coordinates the position of the point P in the flow is defined by its distance y = PN to the contour along
the normal, and the length of the arc x = ON along the contour measured from its nose O to the base of the normal N
(Fig. 1).

The Navier–Stokes equations in the chosen system of coordinates have been derived in the literature many times
both for a perfect gas,30,31,41 and for a multicomponent gas with chemical reactions.41 To reduce the effect of the density
on the coefficients of the equations, to facilitate finding a solution and deriving the different asymptotically simplified
equations both for high and low Reynolds numbers, it is convenient to convert to new independent Dorodnitsyn variables
in the Lees form �, 	 (Refs 30,31):

(1.1)

Fig. 1.
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Here rw(x) is the distance from a point on the contour of the body to the axis of symmetry OZ, r(x) is the distance from
a point in the flow to the OZ axis, 
(x) is the angle between the tangent to the contour of the body and the OZ axis,
��∞ is the density, �∞ is the free stream density, � = 0 for the plane problem and � = 1 for the axisymmetric problem;
all the quantities with the dimensions of length are referred to the radius of curvature R0 at the nose of the body.

We will write the inverse transformation to (1.1)

(1.2)

where � = �(x) is, for the present, an arbitrary function; we will choose it from the condition that the shock layer
thickness ys(x) (which for the viscous shock layer equations, is the required quantity) in the variable 	 is equal to unity
for all x, i.e. from the condition that 	 = 1 when y = ys(x). Then

(1.3)

From relations (1.2) we obtain for Δ̄(ξ) an expression which depends on ys(�), and the inverse expression ys(�) in
terms of Δ̄(ξ):

(1.4)

We will define the function �(x, y) as the stream function, divided by (2)�R�+1
0 :

(1.5)

where H1 is the Lame coefficient, R(x) is the radius of curvature of the contour of the body and v1 and v2 are the
physical components of the velocity vector v along the x and y axes respectively.

We will introduce dimensionless velocity components and the reduced stream function f(�, 	)

(1.6)

(1.7)

Using relations (1.5), we obtain the following expressions for u and v in terms of f(�, 	)

(1.8)

The dimensionless coefficients �̄, k1, k2 are presented below in expressions (1.16).
We will further introduce the dimensionless components of the viscous stress tensor �ij(�, 	) (i, j = �, 	, �) and of

the energy flux density vector X(�, 	) and Y(�, 	)

(1.9)

Here ��0 is the coefficient of dynamic viscosity, �0 is the coefficient of viscosity at the temperature of the adiabatically
stagnant free-stream T0, �xx, �yy, ���, �xy are the physical components of the viscous stress tensor �, multiplied by
R0/�0, in the system of coordinates (x, y, �) (� is the azimuthal angle in the axisymmetric problem), Jx and Jy are
the components of the total energy flux density vector J, multiplied by R0/(�0(H∞ − Hw)), and H∞ and Hw are the
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values of the total enthalpy H in the free stream and on the wall respectively

(1.10)

Here � is the Prandtl number, cp and cv are the specific heat capacities at constant pressure and constant volume, T0T is
the temperature, � is the thermal conductivity and M is the Mach number, where the subscript ∞ indicates the values
of the free stream parameters.

We will write the momentum equations along the x and y axes and the energy equation in the variables (1.1) in the
following form

(1.11)

(1.12)

(1.13)

(1.14)

Here the Navier–Stokes equations are written together with the asymptotic estimates of all their terms for low Re
numbers, given in the sub-lines. The introduction of the parameters � and � and a complete asymptotic analysis will
be given below in Section 3.
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In Eqs. (1.11)–(1.14)

(1.15)

A number of dimensionless coefficients, which are expressed in terms of the specified quantities u∗, v∗, rw, 
, R and
the functions Δ(�), �(�, 	), �(�, 	), y(�, 	), unknown prior to solving the problem, occur in the transformed system
of Navier–Stokes Eqs. (1.8), (1.11)–(1.14) as follows:

(1.16)

The following state equation will close the system of Navier–Stokes equations

(1.17)

where �∞V 2∞p is the pressure and � is the hypersonic parameter

(1.18)

Hence, the final system of Navier–Stokes equations in the variables �, 	 consists of six Eqs. (1.8), (1.11)–(1.14)
and (1.17) for determining the functions f, u, v, �, p, g (or T). Expressions for ys(x) and Δ(�) are presented below.
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2. Boundary conditions

We will write the boundary conditions on a body with an impermeable surface for the no-slip conditions and a
specified temperature Tw

(2.1)

The boundary conditions in the free stream for solving the complete system of Navier–Stokes equations without
standoff of the low shock will be

(2.2)

The boundary conditions on the shock wave, required to solve a number of asymptotically simplified Navier–Stokes
equations, written for 	 = 1, will be

(2.3)

Here usi is the dimensionless velocity vector component along the x axis behind the shock wave in a perfect gas; the
subscript s corresponds to the values on the shock wave. An analysis of the asymptotic estimates, given in the sub-lines,
is given in Section 3.

The angle of inclination of the shock wave to the OZ axis � = �(x) and the standoff of the shock yx(x) are related by
the obvious geometrical relations (Fig. 1)

(2.4)

where �s(x) is the angle of inclination of the shock wave to the x axis. Eq. (2.4) relates the two unknown quantities �s(x)
and ys(x). When formulating the problem of supersonic flow within the framework of the complete Navier–Stokes
equations of the seventh order in the coordinate 	, with four boundary conditions on the required shock wave (2.3) and
three conditions on the body (2.1), one condition is missing, and hence the boundary conditions for the Navier–Stokes
Eq. (2.2) will be formulated on the known boundary fairly far from the body in the unperturbed free stream. For the



I.G. Brykina et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 888–911 897

viscous shock layer equations having a less by one order of the derivative with respect to 	 in the momentum equation
with along the normal to the surface, the boundary conditions are formulated on the shock wave – conditions (2.3).
The condition for v in boundary conditions (2.3) can be replaced by an equivalent condition, which follows from the
conservation of the mass balance of the gas, flowing through the closed contour ONQOs

(2.5)

When solving the Navier–Stokes equations with boundary conditions on a specified fairly distant boundary y = ys(x),
condition (2.5) can serve as an additional condition for checking the accuracy of the solution of the problem.

By converting the balance relation (2.5) to the variables �, 	, we obtain

(2.6)

This mass balance equation can also be obtained from the second equation of (1.8), written on the contour y = ys(x).
Using relations (2.6) and (1.4), we express � and ys in terms of the required functions fs and �s

(2.7)

Using relations (2.6), (2.7), (1.1) and (1.2), we also obtain y(�, 	)

(2.8)

In �, 	 variables the region of integration in the shock layer from the axis of symmetry and further downstream with
respect to the flow is converted into a half-strip with known boundaries: 0 ≤ � ≤ �*, 0 ≤ 	 ≤ 1, where �* is the extreme
point with respect to the marching coordinate.

3. An asymptotic estimate of the terms of the Navien–Stokes equations for low Re numbers

Derivation of the viscous shock layer equations and the thin viscous shock layer equations from the Navier–Stokes
equations for low Re numbers. Previously, an asymptotic analysis of the Navier–Stokes equations was carried out for
high Re numbers, and in that way thin viscous shock layer33,34 and a viscous shock layer37 equations were obtained.
We will carry out an asymptotic analysis of the Navier–Stokes equations for low Re numbers.

We will first estimate the order of the required functions when Re � 1. We will introduce the notation � = us and
� = 1/(�sus). Then, taking relations (1.8) and (2.8) into account, we have

(3.1)

For the shock layer thickness we obtain from relations (2.7)

(3.2)

Hence it follows that when � > 1 in the case of the plane problem (� = 0) a negative value of ys is obtained, while in the
case of the axisymmetric problem (� = 1) one obtains the root of a negative number. Consequently, when � ≥ 1 there
is no solution of the Navier–Stokes equations in the shock layer. Hence, relations (3.2) (or (2.7)) impose a limitation
on the parameter �: � < 1. We will eliminate from consideration values of �, close to unity. Then

(3.3)

For the function �(�), from relations (1.2) and (2.7), taking into account the fact that � < 1, we obtain

(3.4)
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Using relations (1.1), (1.5) and (3.3) we obtain

(3.5)

We will consider the first of the boundary conditions on the shock wave (2.3). On the stagnation line it will have
the form

(3.6)

Hence it follows that

(3.7)

Taking relations (3.1), (3.4) and (3.5) into account we obtain

(3.8)

whence it follows that

(3.9)

Hence, � � 1 when Re � 1. An estimate for the parameter � is obtained from relation (3.9)

(3.10)

From boundary conditions (2.3) we obtain estimates for p and g, while from Eq. (1.8) we obtain an estimate for v

(3.11)

We will further find the order of magnitude of the coefficients of the system of Navier–Stokes equations. For fairly
smooth bodies, from expressions (1.16) we obtain the following estimates for the geometrical parameters

(3.12)

For the other coefficients, determined from expressions (1.16), we obtain

(3.13)

An estimate of the dimensionless components of the viscous stress tensor �ij and the fluxes X and Y gives

(3.14)

We will also estimate the coefficients in boundary conditions (2.3)

(3.15)

Using estimates (3.1)–(3.15) it is easy to estimate the order of magnitude of all the terms in the Navier–Stokes
equations for low Re numbers. These estimates are presented in the sub-lines of Eqs. (1.11)–(1.13) under each term
respectively. We also estimated all the terms in the boundary conditions on the shock wave; the estimates obtained are
given in the sub-lines of relations (2.3).

An analysis of Eqs. (1.11)–(1.14), assuming � to be small, showed the following. If we neglect terms O(�2) in
the Navier–Stokes equations and take into account terms O(1), O(�), O(�), O(��), we obtain the viscous shock layer
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equations (Eqs. (1.11)–(1.13) without Φ1 − Φ4). In this case, in the momentum equation in the normal direction (1.12)
we ignore terms Φ2 = O(�), since, after substituting the value ∂p/∂	, found from this equation, into the momentum
equation in a tangential direction (1.11), these terms will be O(�2�), since the coefficient O(��) is in front of ∂p/∂	. In
a similar way we can obtain the boundary conditions for the viscous shock layer equations by neglecting terms O(�2)
in the boundary conditions (2.3).

If we neglect terms O(�2), O(�) in the Navier–Stokes equations, with the exception of the term with the tangential
pressure gradient, we obtain the thin viscous shock layer equations. The term with the tengential pressure gradient O(�)
is out-of-order term, it remains in the thin viscous shock layer equations since it plays an important role for high Re
numbers, so that, both for low and high Re numbers, a single system of thin viscous shock layer equations is used. The
boundary conditions for this system are obtained from boundary conditions (2.3) if we neglect terms O(�2), O(�) and
put � = 
, since �s = O(�). The thin viscous shock layer equations are presented and solved asymptotically in Section
5.7.

Hence, it follows from an asymptotic analysis of Eqs. (1.11)–(1.14), together with boundary conditions (2.3), that
the viscous shock layer and thin viscous shock layer equations can be obtained from the Navier–Stokes equations not
only for high Re numbers, but also for low Re numbers, assuming the parameter � to be small.

Specific expressions for the parameters � and � in terms of the governing parameters of the problem Re, �, Tw, �, �
(with a power dependence of the coefficient of viscosity on the temperature � ∼ Tω) are presented in Section 6 for
different types of hypersonic rarefied gas flow in the neighbourhood of the stagnation point.

4. A vanishing viscous shock layer

In this section we will consider a limiting case of the Navier–Stokes equations: we will neglect terms O(�2), O(�)
and O(�) in Eq. (1.11)–(1.13), only taking the “principal” terms O(1) into account. In this case, the Navier–Stokes
equations reduce to “local” Stokes equations for the Reynolds problem38 with vanishing inertia forces and pressure, or
to the vanishing viscous shock layer equations. The vanishing viscous shock layer equations can also be considered as
the limiting case of the thin viscous shock layer equations � → 0. Retaining only terms O(1) in the boundary conditions
on the shock wave, we obtain the following boundary-value problem for a vanishingly thin viscous shock layer

(4.1)

(4.2)

with no-slip conditions, no injection or suction and a specified wall temperature. Note that the velocity v(ξ, η) will be
found from the second equation of (1.8) after finding u and T.

Problem (4.1), (4.2) allows of an obvious integral for any temperature dependence of the coefficient of viscosity
��0

(4.3)

After double integration of Eq. (4.1), taking the boundary conditions (4.2) into account, assuming a power temper-
ature dependence of the coefficient of viscosity � = T�, we obtain

(4.4)

The profile of the tangential velocity u is found from relation (4.3). Hence, the solution is obtained, apart from a
normalizing function �, which converts the shock layer into a strip of unit width. We will use boundary conditions
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(4.2) to determine this function. We will first find the reduced stream function f

(4.5)

Substituting f(�, 1) into the fourth relation of (4.2), we obtain an equation for determining �

(4.6)

For an arbitrary index � in the physically permitted interval 1/2 ≤ � ≤ 1 (� = 1⁄2 for solid spheres and � = 1 for
Maxwell molecules; for actual models 0.6 ≤ � ≤ 0.9), Eq. (4.6) is transcendental in �. It becomes a cubic equation
when � = 1⁄2 and a quadratic equation when � = 1 and allows of an analytical solution

(4.7)

For arbitrary � we will consider two flow regimes: �ReΔ/T �
w � 1 and T �

w/�ReΔ � 1 – the cold wall regime (below
we distinguish different regimes of the hypersonic) rarefied gas flow, and the regimes considered here correspond to
regimes III and I of Section 6), and we obtain approximate analytical solutions of Eq. (4.6) by expanding the expression
in the brackets in series in the corresponding small parameters

(4.8)

(4.9)

Taking expressions (4.7)–(4.9) into account, the solution (4.4), (4.3) for the temperature T and the velocity u in the
shock layer and on its boundary 	 = 1 will be

(4.10)

(4.11)

(4.12)

(4.13)

It can be seen from these relations that T and u differ from their values on the wall by a small quantity for low Re
numbers.

If we put � = 1 in expressions (4.8) and (4.11), they become expressions (4.7) and (4.10) respectively. Also, if we
put � = 1 in expressions (4.9) and (4.12), they also become expressions (4.7) and (4.10), written for Tw = 0.

The solutions (4.10)–(4.13) have been obtained in the variables �, 	. We will change to the initial physical variables
x = �, y = y(�, 	). Taking the state equation (1.17) and the solution (4.4) into account, from relations (1.2) after integration
(ignoring terms O(y2)) we obtain the following relation between the physical and auxiliary coordinates

(4.14)
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Substituting expressions for �, obtained in the three cases (4.7)–(4.9), into this relation we find the final relation
between y and 	

(4.15)

(4.16)

(4.17)

Putting 	 = 1 in these relations, we obtain the outer boundary of the shock layer ys(x).Here, in relation (4.16), we
take two terms of the expansion in the parentheses

(4.18)

(4.19)

Note that the exact solution for � = 1 is identical with the approximate solution for �Re � T 1+�
w when � = 1, and

these solutions are combined here and below for compactness. From relations (4.15)–(4.17) we express 	 in terms of y

(4.20)

(4.21)

Substituting these expressions, respectively, into relations (4.10)–(4.12), we obtain the solution in the physical
variables x, y

(4.22)

(4.23)

Formula (4.22) as Tw → 0 changes into formula (4.23). In the general case, it gives the solution with an error

O(�Re/T 1+�
w )

3/2
. We will further obtain the reduced stream function. Substituting the expressions for � from

(4.7)–(4.9) into relation (4.5), we obtain

(4.24)

(4.25)

When � = 1 expression (4.25) is identical with expression (4.24).
Using relations (1.7), (4.7)–(4.9), (4.24) and (4.25), we find the stream function

(4.26)
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When 	 = 1 we obtain the value of the stream function on the outer boundary of the vanishing viscous shock layer,
which differs from its exact value �∞V∞(rsR0)ν+1/(ν + 1) by O(ys), compatible with this asymptotic consideration
of the problem. Using formulae (4.20) and (4.21) without taking into account terms O(y2), we change in expressions
(4.26) to the variable y:

(4.27)

We will now find the normal component of the velocity v in the shock layer. Using expressions (1.8) and (4.27) we
obtain

(4.28)

It is not difficult to obtain the value of v on the outer boundary of the shock layer by substituting y = ys(x) from (4.18)
and (4.19) into these expressions. Taking expressions (4.18) and (4.19) into account, the estimate of v from (4.28) gives
v = O(1/�), which is compatible with the asymptotic estimate of v derived above in Section 3.

Finally, we will formulate expressions for the drag coefficient and the heat transfer coefficient. Within the framework
of the asymptotic approximation of the vanishingly thin viscous shock layer, we obtain the following expressions for
the specific heat flux, the shear stress and the normal pressure and the corresponding coefficients

(4.29)

The expressions for q, �xy and pw completely agree with the expressions given by the kinetic theory of gases, neglecting
the momentum and energy of the re-emitting molecules (free-molecule flow), for an accommodation coefficient equal
to unity. Integrating q, �xy and ρ∞V 2∞pw over the whole windward convex part of the surface of an arbitrary body

∑

over which the flow occurs, we obtain the overall heat transfer coefficient and the total drag coefficient (S is the centre
seetion area)

(4.30)

5. The thin viscous shock layer equations in the neighbourhood of the stagnation line

To investigate the three-dimensional hypersonic flow over a smooth blunt body we will choose a system of coordi-
nates attached to its surface in such a way that the x1 and x2 axes lie in the planes of principal curvature and the y axis
is directed along the normal to the surface. In such a system of coordinates the equations of a three-dimensional thin
viscous shock layer in the neighbourhood of the stagnation line in Dorodnitsyn–Lees variables have the form40
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(5.1)

Here all the linear dimensions relate to the least of the radii of principal curvatures R0, V∞vi are the components of
the velocity vector, vi = vi∞ui(i = 1, 2), Tw is the dimensionless surface temperature, ys is the standoff distance of
the shock and � is the ratio of the radii of the principal curvatures at the stagnation point, 0 ≤ � ≤ 1.

In the case of the axisymmetric problem

In the case of the plane-parallel problem

We will set the no-slip condition and the specified temperature on the body surface, and the generalized
Rankine–Hugoniot conditions on the shock wave

(5.2)

The skin friction coefficient and the heat transfer coefficient on the surface are defined as follows:

(5.3)

6. Basic parameters and regimes of the hypersonic rarefied gas flow in the neighbourhood of the stagnation
line of a blunt body

The analysis of the viscous shock layer equations and the analysis of the Navier–Stokes equations in a hypersonic
shock layer, presented above, shows that there are two fundamental parameters of the hypersonic rarefied gas flow.
The first parameter is � = 1/(�sus) = O(�s/(�sRe))1/2 and the second parameter is � = us = O((Re/(�s�s))

1/2). An
asymptotic analysis shows that the shock layer thickness ys = O(�), while the dimensionless tangential velocity and
enthalpy uis and gs = O(�). We will express the parameters � and � in terms of the governing parameters of the problem
Re, �, Tw, �, �(�T �) with �Re = o(1).

Expressing �s and �s in terms of the temperature �s = T �
s , 1/�s = �Ts, we obtain that � = O((�T 1+�

s /Re)
1/2

),
where Ts = gs(1 − Tw) + Tw. In order to estimate � and � we must estimate uis and gs. We will write the boundary
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conditions on the shock wave (5.2), estimating the terms that occur in them

(6.1)

It follows from an analysis of relations (6.1) that when �Re = o(1) we have uis, gs = o(1) Then

(6.2)

We will consider three possible relations between gs and Tw

(6.3)

We then have

(6.4)

It follows from the solution of system (6.2) for each of the three cases that

(6.5)

Substituting expressions (6.4) into expressions (6.3), we obtain three flow regimes in the hypersonic viscous shock
layer for low Re numbers depending on relatic between the governing parameters of the problem Re, �, Tw, �

(6.6)

Taking expressions (6.4) and (6.5) into account we obtain that in Regimes I and II the parameter � =
O((�Re)1/(1+�) and the parameter � = O(�). In Regime III the parameter � = O((�ReT 1−�

w )
1/2

) and the parameter

� = O((�T 1+�
w /Re)

1/2
).

The parameter � characterizes the degree of the gas rarefaction and the applicability of the asymptotic solution, on
which we will comment below. The parameter � represents the applicability of the continuum models in the transitional
regime. In Regimes I and II the parameter � is of the order of �, and in hypersonic flow it is small in the stagnation
region. In Regime III the parameter � depends on Re, � and Tw.

Relations (6.6) can be rewritten in a different form and considered as defining a range of the Re numbers to Re
considered for specified parameters � and Tw

(6.7)

7. The asymptotic solution of the thin viscous shock layer equations

We will obtain approximate asymptotic solutions of the thin viscous shock layer equations for all the rarefied gas
flow regimes, in particular, for the skin friction coefficient and the heat transfer coefficient as a function of the governing
parameters of the problem, for small � and low Re numbers, by using the method of successive approximations and the
asymptotic expansion in series in a small parameter. The system of Eq. (5.1) with boundary conditions (5.2) is solved
for three flow regimes by the integral method of successive approximations using the algorithm described in Ref. 42.
The analytical solutions obtained in the first approximation are expanded in series in the small parameters occurring
in them.

In Regimes I and II, the analytical solutions obtained by the method of successive approximations depend on the
Re number in terms of one parameter � = (2�Re/(1 + �))1/(1+�). In order to obtain an asymptotic solution for low Re
numbers, these analytical solutions are expanded in series in the parameter �. An asymptotic solution for Regime I –
the regime of a strongly cooled surface, was obtained in Ref. 36, for which the temperature factor Tw drops out from
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the governing parameters of the problem. The following expressions are obtained for the skin friction coefficient and
the heat transfer coefficient as a function of the governing parameters Re, �, �, �, �

(7.1)

For Regime II the algorithm for obtaining the solution is similar to the algorithm presented previously in Ref. 36 for
Regime I. We obtain the following asymptotic solution for the heat transfer coefficient and the skin friction coefficient

(7.2)

The parameter �̄, is related to the dimensionless temperature Tw as follows:

(7.3)

Regime I is the cold-wall regime, when the solution is independent of the surface temperature Tw; it can be regarded
as the limiting case of Regime n when �̄ → 0(Tw → 0).

When Re → 0 or �Re→>0 we obtain the following limiting expressions for the heat transfer coefficient and the
skin friction coefficient for Regimes I �̄ = 0 and II

(7.4)

In Regimes I and II, when the Re number decreases, the value of the heat transfer coefficient approaches its
value in the free-molecule flow regime with an accommodation coefficient equal to unity.43 The limit value of the
skin friction coefficients when Re→0 exceeds the value in free-molecule flow, which is equal to two, by an amount
4di��(1 + 2�̄)/(1 + �) = O(�) due to taking into account out-of-order terms with a tangential pressure gradient in the
momentum Eq. (5.1). Note that in the free-molecule flow regime the tangential pressure gradient is equal to zero. The
term related to the tangential pressure gradient is proportional to �, while in Regimes I and II � = O(�), and when �
decreases the skin friction coefficients cfi approach their free-molecule limit.

The expression for ys in the case of axisymmetric flow and � = 1⁄2 for Regime I has the form

(7.5)

The first term here is identical with the vanishingly thin viscous shock layer solution (Section 4).
In Regime III the analytical solution of problem (5.1), (5.2) for the heat transfer coefficient, obtained by the method

of successive approximations, depends only on one small parameter � = (2�ReT 1−�
w /(1 + �))

1/2
. By means of an

expansion in series in this parameter we obtain the asymptotic solution for the heat transfer coefficient, which, as in
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Regimes I and II, approaches its free-molecule limit as the Re number decreases

(7.6)

However, Regime III, which corresponds to �Re � T 1+�
w , differs in principle from Regimes I and II in that it

concerns the skin friction coefficients. In Regime III the parameter � = ((1 + �)�T 1+�
w /(2Re))

1/2
plays an important

role; this parameter is not necessarily small, as in Regimes I and II, where � = O(�). Also, the behaviour of skin friction
coefficients is considerably different compared with the heat transfer coefficient, since the solution for the skin friction
coefficients depends not only on the parameter � but also on the parameter �. As Re → 0, beginning with a certain
value of the Re number, the shock layer thickness ys (ys = O(�)) begins to increase without limit and, at the same time,
the skin friction coefficients begin to increase without limit. The asymptotic solution for the skin friction coefficients
can only be obtained on the assumption that the parameter � is small by expanding the analytical solution obtained by
the method of successive approximations in series in the small parameters � and �

(7.7)

In a thin viscous shock layer the skin friction coefficients and the heat transfer coefficient depend on the parameter
� only through terms related to the pressure gradient. Analytical and numerical solutions show that, at low Re numbers
the pressure gradient affects the skin friction coefficient and ceases to affect the heat transfer coefficient. Hence, when
the parameter � or the shock layer thickness ys, increases, this affects the skin friction coefficients but has no effect on
the heat transfer coefficient. However, only in the thin viscous shock layer model, the heat transfer coefficient does not
depend on the shock layer thickness ys. In other continuum models, for example, in the viscous shock layer model or the
Navier–Stokes equations, an increase in the shock layer thickness ys leads to an increase in the heat transfer coefficient,
since ys affects the heat transfer via the Lamé coefficient H1 and geometrical parameter r̄, which are assumed to be
equal to unity in the thin viscous shock layer.

When the Re number decreases the value of the heat transfer coefficient approaches its value in free-molecule
flow for any �. The skin friction coefficients approach the free-molecule limit with the additional condition � → 0
(ys → 0) or if we neglect terms with the tangential pressure gradient in the momentum equations, which, essentially,
corresponds to a rigorous derivation of the thin viscous shock layer equations. Terms with the tangential pressure
gradient are out-of-order terms in the thin viscous shock layer model, and they are retained to improve the accuracy of
the equations for high Re numbers. Hence, when using the strict thin viscous shock layer model (without a tangential
pressure gradient) the skin friction coefficients like the heat transfer coefficient, depend on the single parameter � and
in all cases, irrespective of the value of �, approach the free-molecule limit.

8. Numerical solutions of the viscous shock layer and thin viscous shock layer equations and discussion of
the results

The theoretical results described above were verified by comparing with numerical solutions of the viscous shock
layer and thin viscous shock layer equations, obtained in this paper, and also with the numerical solutions of the
Navier–Stokes equations, with experimental data and the results of calculations by the Direct Simulation Monte Carlo
method, described in the literature.

Numerical solutions of the viscous shock layer and thin viscous shock layer were obtained by the implicit finite-
difference marching method with a high accuracy of approximation. This method is based on global iterations of only
one function – the elliptic component of the pressure gradient – and requires a small number of global iterations over the
elliptic terms. Special splitting of the tangential pressure gradient into elliptic and hyperbolic component is used39,40

In Fig. 2 we demonstrate the high accuracy of the asymptotic solution (the dashed curves) for the heat transfer
coefficient cH and the skin friction coefficient cf compared with the numerical solutions of the thin viscous boundary
layer (the continuous curves) for different values of the surface temperature Tw = 10−1, 10−2, 10−4 and 10−6 – curves
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Fig. 2.

1–4; the dash-dot curves 5 correspond to Regime I; � = 1 (the axisymmetric problem), � = 1.4, � = 0.5 and � = 0.7.
A reduction in Tw (cooling of the wall) leads to extension of the range of applicability of the solution for the skin
friction coefficient (for the asymptotic one and the numerical one) towards lower Re numbers, since a reduction in the
temperature factor Tw leads to a reduction in the parameter �. This can be clearly seen in Fig. 2. At the same time, the
heat transfer coefficient at low Re numbers depends only very slightly on Tw and is close to the solution for Regime
I in the case of a cooled surface. The numerical solution confirms the theoretical conclusion that the value of the heat
transfer coefficient obtained within the framework of the thin viscous shock layer as Re → 0 approximates to the value
in free-molecule flow irrespective of the value of the parameter �%.

Numerical solutions of the viscous shock layer equations are shown in Figs. 3 and 4. These solutions demonstrate
the influence of the parameter � (or �) and the surface temperature Tw on the shock layer thickness ys and the heat
transfer coefficient cH and the skin friction coefficient cf within the framework of the viscous shock layer model. In
Fig. 3 we show cH and cf as a function of the Re number for � = 0.14, 0.1, 0.02 and 0.005, i.e. � = 1.4, 1.25, 1.04 and
1.01 (curves 1–4). In Fig. 4 the shock layer thickness the heat transfer coefficient and the skin friction coefficient are
given as a function of the parameter �Re. Curves 1–4 correspond to � = 0.1, 0.05, 0.02 and 0.005, i.e., to � = 1.25, 1.11,
1.04 and 1.01. The results of the calculations are given for two values of Tw = 0.1 and 0.01; � = 1 and � = 0.5.

It is important to note that a reduction in � (or �) for high Re numbers leads to an increase in the skin friction and
heat transfer coefficients, while for low Re numbers it leads to a reduction in these coefficients, which follows from
Fig. 3. Figs. 3 and 4 confirm the theoretical conclusion that for low Re numbers a reduction in the parameters � and Tw

leads to a reduction in the parameter �, which leads to a reduction in the heat transfer and skin friction coefficients and,

Fig. 3.
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Fig. 4.

hence, to an extension of the range of applicability of continuum models, in this case the viscous shock layer model,
towards lower Re numbers.

As pointed out above, in the viscous shock layer model the shock layer thickness ys affects the heat transfer
coefficient cH not only via the pressure gradient but also via the Lamé coefficient H1 = 1 + y/R and the geometrical
parameter r̄ = 1 + ycos
/rw, which contains y, and hence an increase in the shock-layer thickness with a reduction
in the Re number leads to an increase in cH. In addition, we also considered a third model – viscous shock layer –
L1, having somewhat simplified viscous shock layer equations in which the Lamé coefficient H1 and the geometrical
parameter r̄ were assumed to be equal to unity, as in the thin viscous shock layer model, but, unlike the latter, terms
O(�) are retained.

In Fig. 5 we compare the solutions for the heat transfer coefficient obtained using the three models for Tw = 0.1,
� = 1.4, � = 1 and � = 0.5: the numerical solutions of the viscous shock layer (curve 1), the viscous shock layer-L1
(2) and the thin viscous shock layer (3), and we also show the asymptotic solution of the thin viscous shock layer
(4). Comparison shows that a simplification of the viscous shock layer equations, when it is assumed that H1 = r̄ = 1
in them, gives a heat transfer coefficient at the stagnation point that is reduced considerably and approaches the
free-molecule limit.
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Fig. 5.

A comparison of the different methods of calculating the heat transfer coefficient along the reentry trajectory of the
Shuttle spacecraft into the Earth’s atmosphere at altitudes h from 90 km to 150 km is shown in Fig. 6 as a function of
the free stream Knudsen number Kn.

In Fig. 6, 1 is the thin viscous shock layer, asymptotic solution, 2 is the thin viscous shock layer, without slip, 3 is
the viscous shock layer-L1, without slip, 4 is the viscous shock layer, without slip, 5 is Navier–Stokes solution, without
slip,29 6 is Navier–Stokes solution, with slip, 7 is Navier–Stokes solution, with slip,44 8 is Navier–Stokes solution,
with slip45 and 9 is the Monte Carlo method.46

The solutions obtained using the continuum models – the asymptotic solution and the numerical solution of the
thin viscous shock layer equations, the numerical solutions of the viscous shock layer-L1 and the viscous shock
layer equations, and the various solutions of the Navier–Stokes equations,29,44,45 obtained using different boundary
conditions on the surface, namely, the no-slip conditions and conditions taking the slip velocity and temperature jump
into account, are compared with the results of calculations using the Direct Simulation Monte Carlo method.46

The values of the heat transfer coefficient obtained from the solution of the viscous shock layer and Navier–Stokes
equations begin to increase sharply when the altitude of flight increases, i.e. when there is an increase in the Kn number (a
in the Re number), deviating from the results of a calculation by the Monte Carlo method and the value in free-molecule
flow. The use of the boundary conditions with slip on the surface leads to a reduction in the heat transfer coefficient, but

Fig. 6.
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does not eliminate its tendency to increase without limit. The best of the solutions of the Navier–Stokes equations,29

taking into account slip effects on the surface for a given blunting radius (1.3 m) and velocity V∞ = 7.5 km/s can correctly
predict the heat fluxes in the neighbourhood of the stagnation point of a blunt body up to an altitude of 115 km. Three
solutions – the asymptotic and numerical solutions of a thin viscous shock layer equations and the numerical solution
of the viscous shock layer-L1 equations – agree well with the results of calculations using the Monte Carlo method up
to an altitude of 150 km. The asymptotic solution gives satisfactory accuracy at altitudes exceeding 100 km.

9. Conclusion

It follows from the detailed asymptotic analysis of the stationary problem of supersonic and hypersonic viscous
heat-conducting perfect gas flow over blunt bodies that the viscous shock layer equations and the thin viscous shock
layer equations can be derived from the Navier–Stokes equations for low Re numbers, assuming that the parameter
� = O((�s/�sRe)1/2), introduced in this paper, is small. In addition to the parameter � we have investigated a second
fundamental parameter of the rarefied gas flow, namely, the rarefaction parameter � = O((Re/�s�s)). When � � 1 and
neglecting terms O(�2) in the Navier–Stokes equations, we obtain the viscous shock layer equations, and when we
additionally neglect terms O(�) we obtain the thin viscous shock layer equations. The viscous shock layer and thin
viscous shock layer equations were previously derived only for high Re numbers.

When � → 0 and � → 0 the Navier–Stokes equations, retaining only the O(1) terms, reduce to the vanishing viscous
shock layer equations. The solution of the vanishing viscous shock layer equations has been obtained in an analytical
form, and it gives the free-molecule limit both for the local and for the overall drag and heat transfer coefficients for
bodies with an arbitrary convex shape of the windward part of the surface.

Non-trivial similarity parameters of the hypersonic rarefied gas flow over a blunt body have been obtained, made
up of the governing parameters of the problem Re, �, �, �, �, which can be extremely useful when processing and
presenting numerical and experimental results.

Asymptotic solutions of the thin viscous shock layer equations have been obtained in the neighbourhood of the
stagnation point of a three-dimensional blunt body as a function of the governing parameters for different flow regimes
at low Re numbers. When the Re number decreases the solution for the heat transfer coefficient, obtained using the
thin viscous shock layer equations, approaches the free-molecule limit; the solution for the skin friction coefficient
approaches the free-molecule limit when the parameter � is small or when using the rigorous thin viscous shock layer
model (without terms with a tangential pressure gradient).

It has been shown that, to calculate the heat transfer in the neighbourhood of the stagnation point of a blunt body
at hypersonic velocities at low Re numbers (high Kn numbers), corresponding to the transient flow regime from free-
molecule to continuum, both the thin viscous shock layer model and the viscous shock layer model with a Lamé
coefficient H1 and a geometrical parameter r̄ equal to unity can be used.

Numerous comparisons of the theoretical results with the numerical solutions of the thin viscous shock layer and
viscous shock layer equations, obtained in this paper, and also with different numerical solutions of the Navier–Stokes
equations and the results obtained by the direct Monte Carlo method, have confirmed the theoretical conclusions.
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